Australian Investment Performance 1960 to 2007 (and Investment Assumptions for Stochastic Models) Colin Grenfell

Historical 4-year (ending 30/6/64 to 30/6/07) compound average annual returns

Presentation

- What?
- Why?
- How? ... briefly
- Results ... 16 of 61 charts
- Acknowledgments

What?

(1) Australian investment performance 30 June 1960 to 30 June 2007
and
(2) Investment assumptions for stochastic (and deterministic) models

What? Growth Securities

- S Australian shares
- I International shares (unhedged)
- Q Property trusts
- P Direct property

What? Interest Income

- F Australian fixed interest
- J International fixed interest (hedged)
- G Government semis (0 to 3 yrs)
- N Inflation linked bonds (0 + yrs)
- L Loans (floating rate)
- M Mortgage trust
- C Cash

What? Financial Indicators

- X CPIndex (annual increase)
- W AWOTE (annual increase)
- B 90 day bill rates (mid-year)
- D 10 year bond rate (mid-year)

"Backdating"

(1) Different data series C

I	1988
I	1970
F	1985
W	1981
W	1974
S	1971
B	1959

SERIES

MSCl accumulation index S\&P500 +3\% +\$AU/\$US
G (Government) sector AWOTE males
AWE all males, total earnings
E (Equities) sector
13 wk treasury note + 1.37\%

"Backdating"

(2) Method of least squares

C
N
J

Q	1977
P	1971
F	1965

FORMULA

71.38\%X + 62.99\%F - 195.05\%d
77.48% C + 34.49\%L
76.74% C + 19.25\%F
$22.68 \% \mathrm{~B}-2+27.44 \% \mathrm{~B}-1$
$+22.82 \% \mathrm{~B}+25.76 \% \mathrm{~B}_{+1}$
$52.06 \% \mathrm{~F}+30.42 \% \mathrm{~S}+18.59 \% \mathrm{M}$ 88.58\%C + 50.02\%X - 23.89\%F 87.09\%D + 14.33\%B - 673.02\%d

What? Statistics

- Risk margins (over 10 year bond rates)
- Coefficients of variation (of rates)
- Skewness (of forces)
- Kurtosis (of forces)
- Cross-correlations (of forces)
- Auto-correlations (of forces)

Also ...

- Arithmetic means (38 years)
- Compound means (38 and 24 yrs)
- Standard deviations (38 years)
- "Balanced" and "Capital stable"
- Gross/net of superannuation tax
- Gross/net of wholesale passive fees

Why?

- Demand versus supply gap
- EFG investment system = 42 yrs
- Valuable long-term database
- Importance of auto-correlations
- Importance of economic cycles

Average (compound) Returns pa.

Average (compound) Returns pa.

Rolling Average Real "Balanced" Returns pa

Net of Tax and Fees, Real over AWOTE, to 30/6/07

Why? another reason

- 1979 Pace of funding
- 1992/7 Investment models
- 2003 Auto-correlations
- 2004 Skewness/kurtosis
- 2005/7 Benefit projections

stochastic

correlations
$3^{\text {rd }} / 4^{\text {th }}$ moments

+ sensitivity

Why? another reason

- 1979 Pace of funding
- 1992/7 Investment models
- 2003 Auto-correlations
- 2004 Skewness/kurtosis
- 2005/7 Benefit projections
all

How? Methodology

- Step 1 Sep, Dec, March, June data
- Step 2 determine calculation periods
- Step 3 annual statistics
- Step 49 "running" averages (of 4)
- Step 5 trend and 6 year projection
- Step 6 year-2 (and judgment)

Adventures in Risk

23-26 September 2007 Christchurch, New Zealand

Fig 5.1

Adventures in Risk

23-26 September 2007 Christchurch, New Zealand

Para 5.7

Adventures in Risk

23-26 September 2007 Christchurch, New Zealand
CPI

$$
\rightarrow \text { CPI } \quad \rightarrow-\text { Fitted Cycle }
$$

Adventures in Risk

23-26 September 2007 Christchurch, New Zealand
AWOTE

Adventures in Risk

23-26 September 2007 Christchurch, New Zealand

SHARES

Year Ending
\rightarrow Shares $\quad \rightarrow$ Fitted Cycle

Figure 6.1 Risk margins over 38 years

Figure 7.1 CoV's over 38 years

Skewness and Kurtosis

Figure 10.1 Skewness over 38 years

Figure 11.1 Kurtosis over 38 years

[60\%]

[57\%]

Fig 12.1 Cross-correlation over 38 yrs

[6\%]

Cross-correlation Assumptions (abridged)

RANK CROSS-CORRELATIONS @ 2 YRS (5-point average, rounded)

	Austn.	Listed Sroperty	Fixed Interest	Cash	Direct Property	CPI	AWOTE
SECTOR	Shares	Pustn. Shares	$\mathbf{1}$.54	.09	.12	.10

Figure 14.2 S Sector Auto-correlations over 40 yrs

Figure 14.3 Bond Auto-correlations over 40 yrs

Table 15.1 Investment Assumptions

Sector	Risk margin (arithmetic average)	Mean rate (arithmetic average)	Compound average	Coefficient of variation	Standard deviation of rates	Skewness	Kurtosis
S	4.5\%	10.5\%	9.3\%	1.533	16.1\%	-29\%	60\%
I	4.2\%	10.2\%	9.1\%	1.539	15.7\%	-24\%	57\%
Q	3.7\%	9.7\%	9.0\%	1.299	12.6\%	-32\%	56\%
P	2.0\%	8.0\%	7.7\%	0.900	7.2\%	-147\%	350\%
L	1.0\%	7.0\%	6.9\%	0.500	3.5\%	54\%	-35\%
M	1.0\%	7.0\%	6.9\%	0.500	3.5\%	68\%	-72\%
F	0.5\%	6.5\%	6.4\%	0.723	4.7\%	-90\%	233\%
G	0.1\%	6.1\%	6.0\%	0.607	3.7\%	11\%	-46\%
J	0.3\%	6.3\%	6.2\%	0.698	4.4\%	-92\%	229\%
C	-0.4\%	5.6\%	5.6\%	0.500	2.8\%	70\%	-76\%
N	0.5\%	6.5\%	6.4\%	0.800	5.2\%	-59\%	71\%
Balncd	2.7\%	8.7\%	8.3\%	1.082	9.4\%	-63\%	73\%
CapStb	1.1\%	7.1\%	6.9\%	0.673	4.7\%	-76\%	183\%
B	-0.40\%	5.60\%	5.56\%	0.536	3.00\%	81\%	-38\%
D		6.00\%	5.97\%	0.417	2.50\%	38\%	-118\%
W	-2.20\%	3.80\%	3.78\%	0.552	2.10\%	158\%	297\%
X	-3.50\%	2.50\%	2.48\%	0.720	1.80\%	56\%	-52\%

Table 17.1 Gross/net of tax/fees

Sector	Mean rate (arithmetic average)			Compound Average rate After tax \& IC's After fees
	Before tax Before fees	Before tax After fees	After tax \& IC's After fees	
S	10.50\%	10.24\%	9.88\%	8.92\%
I	10.20\%	9.91\%	9.01\%	8.12\%
Q	9.70\%	9.41\%	8.42\%	7.80\%
P	8.00\%	7.18\%	6.14\%	5.94\%
L	7.00\%	6.71\%	5.70\%	5.66\%
M	7.00\%	6.71\%	5.70\%	5.66\%
F	6.50\%	6.32\%	5.37\%	5.28\%
G	6.10\%	5.92\%	5.03\%	4.98\%
J	6.30\%	6.12\%	5.20\%	5.13\%
C	5.60\%	5.41\%	4.60\%	4.57\%
N	6.50\%	6.31\%	5.43\%	5.33\%
Balncd	8.68\%	8.42\%	7.77\%	7.44\%
CapStb	7.05\%	6.83\%	6.05\%	5.97\%
B	5.60\%	5.60\%	4.76\%	4.73\%
D	6.00\%	6.00\%	5.10\%	5.08\%

Appendices

- A Modelling Skewness and Kurtosis

Normal power approximation, and
a gamma exponential variable

- B Modelling Auto-correlations

Shares (S sector) - one extreme
Bonds (D sector) - other extreme

- C Austmod Investment Simulation Model - Inputs

The 26 inputs are described
"Historical random start" modelling defined

Acknowledgments

- Alan Brown
- Cary Helenius
- Clive Amery
- AXA Australia and National Mutual
- designers of EFG investment system

Paragraph 4.3

"Of major significance was the introduction in 1965 of a selective investment facility known as the EFG system. Evidence of the success and wide acceptance of this concept, which was pioneered by National Mutual in Australia, may now be seen in the fact that it has since been adopted by a number of other financial institutions as a medium for superannuation investment."

If the next 38 years equal the last 38 years:
Net accumulation towards retirement = 6.375%

40 Year Supn Guarantee Retirement Benefits as a multiple of Final Salary

Retirement Date

\rightarrow 'actual' 40 yr multiples \rightarrow 'projected' 40 yr multiples

